Case Study: Truck Noise Sources

Yuriy Gurovich
Kenneth Plotkin
William Blake
Paul Donavan

Under sponsorship of the NCHRP, Transportation Research Board of the National Academies
Project No. 08-56 “Truck Noise-Source Mapping”

Workshop “Measuring Tire-Pavement Noise”
January 10, 2010; Pres. # P10-0245
Truck Noise-Source Mapping

- NCHRP Project No. 08-56
- Completed April 2009
- **Objective**: Use noise mapping techniques to localize, identify, and quantify noise sources on typical trucks under actual roadway conditions
- **Scope**: Design, development, experimental demonstration, and validation of practical technology for truck noise source localization and (particularly) vertical distribution
- **Presentation Purpose**:
 - Review study results with
 - Emphasis on tire-pavement noise generation
Truck Noise Sources

- Heavy trucks are significant contributors to overall traffic noise levels (≈+10 dB vs. light vehicles)
- Major noise sources on trucks:
 - exhaust stack outlet
 - muffler shell
 - exhaust pipes
 - engine block
 - air intake
 - cooling fan
 - tire-pavement interaction
Acoustic Beam Forming Technique

- A single microphone is non-directional

- A sound intensity probe (OBSI) is a simple array of two microphones

- A complex array of microphones with a phase delay for each signal is an acoustical antenna with a directivity pattern

- Sound from test object is measured at a number of mics and calculations are repeated for a large number of angles to obtain a full map

- Advantages:
 - Measurements in far field
 - Use in uncontrolled situations
 - No special test vehicles
Experimental Microphone Array

70+ microphone elliptical array designed and constructed:

- width 4 ft; height 12 ft; aspect ratio of 1.7
- 3 metal frame sections mounted vertically on four-wheel metal base
- 14 PVC pipe spokes each holding 5 mics
- additional mics easily integrated (7 in the array center)
- PCB ¼-inch electret microphones with ICP® preamplifiers and windscreens
- Excellent side lobe suppression of ~ -14 dB at 250 to 2250 Hz and ~ -11 dB at 8000 Hz
- The post-processing algorithm incorporates a cross-spectral density (CSD) method with spherical divergence, source tracking and Doppler shift correction
Data Acquisition System

- National Instruments Model PXI-1044 embedded controller chassis for 80 digital data channels
- Software for running the system in real time and transferring data from PXI to a laptop computer for post-processing
- GPS-based time code generator for data synchronization
- 2 pairs of photo cells to register truck pass-bys
- Vehicle tracking system for determining the truck speed (during controlled tests)
Proof-of-Concept Testing

International Truck and Engine Corp., Fort Wayne, IN

Array calibration using omni-directional speaker at low-speed pass-by sound pad (truck speed up to 35 mph)

1-mile long multiple-lane loop for endurance truck testing up to 50 mph
Microphone Array Calibration

- Images of measured and calculated omni-directional source emission:
 - source elevation 6 ft
 - array stand-off at road side 20 ft
- Additional speaker positions were used to test array steering off the array axis
Truck Pass-by Tests

- **Low-speed track**
 - Truck 4400
 - Truck 9200

- **Endurance track**
 - Truck 9200
 - Truck 5900

All trucks by International®
Stationary Truck 4400 with Speaker

- Spherical source unambiguously disclosed.
- Reflected path from road surface.
- Engine noise apparent by both direct and reflected paths above 900 Hz.

Engine at 2000rpm

\[f = 231 \text{ Hz}, (L_s)_{\text{max}} = 95 \text{ dB} \]
\[f = 600 \text{ Hz}, (L_s)_{\text{max}} = 89 \text{ dB} \]
\[f = 922 \text{ Hz}, (L_s)_{\text{max}} = 81 \text{ dB} \]
\[f = 1937 \text{ Hz}, (L_s)_{\text{max}} = 84 \text{ dB} \]
Stationary and Moving Truck 44000 with Speaker

Stationary; Engine 2000 RPM; 922 Hz

25 mph; Engine 2000 RPM; No Speaker; 988 Hz

25 mph; Engine 2000 RPM; 922 Hz
Truck 5900 at 50 mph

- Engine at 1400 rpm
 - 695 Hz
 - 868 Hz
 - 1346 Hz
Truck 9200 at 35 mph: Exhaust with and without Muffler

- Tire sound from rear tires at and just below road surface.
- Engine sound with clear ground reflection.
- Sources at exhaust opening excite cross-modes of open-backed fairing at cab roof.
- Strong ground path.

665 Hz

709 Hz

Muffler Intact

Muffler Removed
• A common (and dominant!) path for sound from the engine compartment is by ground reflection.
• The above-cab flow fairing can amplify and re-radiate exhaust sound.
• Tire noise sources appear at and slightly below road surface.
Roadside Testing Along US-301 in MD

Data Acquisition

- Components for measurement shown during deployment
- 100 vehicle pass-bys recorded in one day

Array (77 mics)
Cal. Source
Photocells
Truck ID060 Source Image Maps

Tractor drive axle tires vs. trailer tires: different tire patterns
Truck ID015: Typical Source Image and Vertical Distribution
Vertical Distribution of A-wtd OASPL for 59 Heavy Trucks
Truck ID038 (Dump Truck)

250 Hz

315 Hz

500 Hz

630 Hz

1250 Hz

A-wtd OASPL
Truck Noise-Source Modeling

Simulation geometry

Simulated vertical distribution (red) vs. measured distribution (blue)
(max A-wtd levels at 500 Hz)
Conclusions

- Tire-pavement noise was dominant for most trucks
- A small proportion of heavy trucks showed significant noise sources at the vertical exhaust stack
- Results have been applied to barrier height analysis using TNM (Inter-Noise 2009, Ottawa, Canada)
- Potential areas for follow-up research and application include:
 - nation-wide measurements for a wider range of pavements and terrains with simplified microphone array
 - traffic noise prediction model updates using noise source distributions for different vehicle types from this and follow-up studies
 - measurement and analysis of abatement measures for trucks, automobiles, buses, motorcycles, and other noise sources, such as construction equipment, etc.
Thank you.

Questions?