Overview of Measured Effects of Mitigation for LRT Systems

Shannon McKenna
ATS Consulting
ADC40 Summer Meeting
July 22, 2014
Presentation Outline

• FTA guidance on noise and vibration mitigation reduction

• Noise mitigation options:
 o Rail grinding
 o Rail dampers
 o Low-impact frogs

• Vibration mitigation options
 o Resilient fasteners
 o Ballast mat
 o Tire-derived aggregate
 o Floating slab track
Table 6-12. Transit Noise Mitigation Measures

<table>
<thead>
<tr>
<th>Application</th>
<th>Mitigation Measure</th>
<th>Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stringent Vehicle & Equipment Noise Specifications</td>
<td>Varied</td>
<td></td>
</tr>
<tr>
<td>Operational Restrictions</td>
<td></td>
<td>Varied</td>
</tr>
<tr>
<td>Resilient or Damped Wheels</td>
<td>For Rolling Noise on Tangent Track: 2 dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For Wheel Squeal on Curved Track: 10-20 dB</td>
<td></td>
</tr>
<tr>
<td>Vehicle Skirts*</td>
<td></td>
<td>6-10 dB</td>
</tr>
<tr>
<td>Undercar Absorption*</td>
<td></td>
<td>5 dB</td>
</tr>
<tr>
<td>Spin slide control (prevents flats)*</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>Wheel Truing (eliminates wheel flats)*</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>Rail Grinding (eliminates corrugations)*</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>Turn Radii greater than 1000 ft*</td>
<td>(Avoids Squeal)</td>
<td></td>
</tr>
<tr>
<td>Rail Lubrication on Sharp Curves*</td>
<td>(Reduces Squeal)</td>
<td></td>
</tr>
<tr>
<td>Movable-Point Frogs (reduce rail gaps at crossovers)*</td>
<td>** (Reduces Impact Noise)</td>
<td></td>
</tr>
<tr>
<td>Engine Compartment Treatments (Buses)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PATH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound Barriers close to Vehicles</td>
<td></td>
<td>6-15 dB</td>
</tr>
<tr>
<td>Sound Barriers at ROW Line</td>
<td></td>
<td>3-10 dB</td>
</tr>
<tr>
<td>Alteration of Horiz. & Vert. Alignments</td>
<td></td>
<td>Varied</td>
</tr>
<tr>
<td>Acquisition of Buffer Zones</td>
<td></td>
<td>Varied</td>
</tr>
<tr>
<td>Ballast on At-Grade Guideway*</td>
<td></td>
<td>3 dB</td>
</tr>
<tr>
<td>Ballast on Aerial Guideway*</td>
<td></td>
<td>5 dB</td>
</tr>
<tr>
<td>Resilient Track Support on Aerial Guideway</td>
<td></td>
<td>Varied</td>
</tr>
<tr>
<td>RECEIVER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acquisition of Property Rights for Construction of Sound Barriers</td>
<td></td>
<td>5-10 dB</td>
</tr>
<tr>
<td>Building Noise Insulation</td>
<td></td>
<td>5-20 dB</td>
</tr>
</tbody>
</table>

* Applies to rail projects only

** These mitigation measures work to maintain a rail system in its as new condition. Without incorporating them into the system, noise levels could increase up to 10 dB.
Rail Grinding

• Implementing a rail grinding program and enforcing a rail roughness specification may reduce noise levels
• Need to document rail roughness levels during reference noise measurements
• Rail grinding was accepted as a mitigation measure for the Sac RT South Line after a detailed rail grinding study was conducted.
Rail Grinding

Noise Reduction from Grinding in Sacramento:

<table>
<thead>
<tr>
<th>Location</th>
<th>Difference, Nov 2012</th>
<th>Difference, Feb 2011</th>
<th>Difference, July 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1, Mercantile</td>
<td>-2.4</td>
<td>0.0</td>
<td>-2.4</td>
</tr>
<tr>
<td>Site 2, Natoma</td>
<td>-5.9</td>
<td>-3.7</td>
<td>-5.1</td>
</tr>
</tbody>
</table>

Nov 2012 is immediately after grinding, Feb 2011 is three months after grinding, July 2011 is eight months after rail grinding and one week after wheel truing.

Noise Reduction from Grinding in Saint Louis:

<table>
<thead>
<tr>
<th>Alignment Section</th>
<th>A-Wt 2010</th>
<th>630-1000 Hz 2010</th>
<th>A-Wt 2013</th>
<th>630-1000 Hz 2013</th>
<th>A-Wt Difference</th>
<th>630-1000 Hz Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Line EB</td>
<td>79.0</td>
<td>78.3</td>
<td>74.4</td>
<td>67.7</td>
<td>-4.6</td>
<td>-10.6</td>
</tr>
<tr>
<td>(Lambert-Shiloh Scott)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Line WB</td>
<td>79.5</td>
<td>79.2</td>
<td>73.9</td>
<td>67.6</td>
<td>-5.6</td>
<td>-11.6</td>
</tr>
<tr>
<td>(Shiloh Scott-Lambert 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue Line EB</td>
<td>76.7</td>
<td>75.3</td>
<td>78.3</td>
<td>72.8</td>
<td>1.6</td>
<td>-2.5</td>
</tr>
<tr>
<td>(Shrewsbury-Forest Park)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue Line WB</td>
<td>75.5</td>
<td>74.2</td>
<td>75.0</td>
<td>69.4</td>
<td>-0.4</td>
<td>-4.8</td>
</tr>
<tr>
<td>(Forest Park-Shrewsbury)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rail Dampers

- Dampers are tuned to absorb specific vibration frequencies which reduces the amount of noise radiated by the rail.
- Dampers are attached to the rail. The figure shows two dampers installed between each tie.
Rail Dampers

• Measurements from test section at SacRT show reduction in wayside noise levels by 3 dB.
• Measurements of rail vibration with dampers show a decrease in vibration levels of up to 15 dB, indicating the dampers reduced noise radiated off of the rail to a level substantially lower than the noise radiated off of the wheels.
• Installing supplemental wheel dampers may further decrease the noise levels.
• Measurements at BART show installation of rail dampers is helping to slow corrugation growth.
What is a frog?

- The frog is the part of a turnout where two rails cross.
- The gap in the rail creates a banging noise.
Low-Impact Frogs

- **Flange-bearing frogs**
 - The wheel will ride on the flange on a ramp through the gap providing a smoother transition.
 - May reduce noise and vibration levels by half.

- **One-way low speed (OWL frogs)**
 - Flange-bearing in diverting direction and no gap in the main line direction.
 - For emergency turnouts, could be little or no increase in noise and vibration.

- **Spring rail and moveable point frogs**
 - Have a moveable wing rail held against the point rail by springs.
 - Expensive and difficult to maintain, but result in only a marginal increase in noise and vibration.

- **Monoblock frogs**
 - Machined out of a single block of steel with tighter tolerances.
 - Preliminary measurements show may reduce noise and vibration levels by half.
FTA Guidance: Vibration Mitigation

<table>
<thead>
<tr>
<th>Track Support System</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resilient Fasteners (vertical stiffness in the range of 30,000 lb/in)</td>
<td>Reduce vibration by as much as 5 to 10 dB at frequencies above 30 to 40 Hz</td>
</tr>
<tr>
<td>Ballast Mats (for ballast-and-tie track)</td>
<td>10 to 15 dB attenuation at frequencies above 25 to 30 Hz</td>
</tr>
<tr>
<td>Tire Derived Aggregate (TDA)</td>
<td>No information included in manual – measurements show similar reduction to ballast mat</td>
</tr>
<tr>
<td>Floating Slabs</td>
<td>Effective at frequencies greater than their single-degree-of-freedom vertical resonance frequency (no attenuation values specified)</td>
</tr>
</tbody>
</table>
Resilient Fasteners

Source: Pandrol

Vanguard Fastener
http://www.pandrol.com/product/vanguard

Delkor Egg Fastener
Resilient Fasteners

- Insertion loss starts at ~30Hz and is optimal in the range 40Hz to 200Hz
- Variation in track structure probably accounts for a lot of the variation in insertion loss
- Knowing the FDL fastener stiffness is important in estimating insertion loss

- Writing an appropriate specification is important in achieving correct amount of attenuation
Ballast Mats

• Rubber mat placed under ballast-and-tie track
• Can be installed on top of a support layer (concrete or asphalt slab) – insertion loss modeling by HMMH in 2005
• Can be installed without support layer directly on sub-ballast. Attenuation curve developed by ATS Consulting for Expo Phase I analysis

Source: Amsted RPS
Ballast Mats

• Insertion loss shown below assumes no support layer.
• Insertion loss may be greater if ballast mat is placed on top of a support layer.
Tire-Derived Aggregate (TDA)

• Similar performance to ballast mat:
 o Denver RTD Light Rail System (study by HMMH)
 o Vasona Line of Santa Clara Valley Transportation Authority (study by WIA)

• Recent Installations
 o Metro Gold Line Foothill Extension (under construction)
 o Calgary CTrain West Extension (in operation)

• Lower material cost compared to ballast mat

Source: http://www.calrecycle.ca.gov/Tires/TDA/Projects/Vasona.htm
Tire-Derived Aggregate

TDA Insertion Loss

Standard Track minus TDA, dB

1/3 Octave Band Center Frequency, Hz

Denver RTD
Vasona Line, VTA
TDA Average

ATSConsulting
acoustics, transportation + strategy
Floating Slab Track

- Can provide the greatest amount of mitigation over the widest frequency range
- High cost and may not be suitable for shared rights-of-way

Diagram:
- Floating Cast-in-Place Slab
- Floating Precast Slab
- Concrete Tub
- Side Pad
- Air Gap
- Natural Rubber based Support Pad
Floating Slab Track

- The resonant frequency is designed to fit the needs of the project
- The SDOF model is suitable for predicting FST performance
Conclusions

- There are more mitigation measures available than are listed in the FTA Guidance Manual and there are alternatives to sound walls.
- Many mitigation measures require detailed analysis and design that occurs after the environmental assessment.
- Writing a good specification and consulting with suppliers is key to achieving the desired performance.

Figure 2-1. The Source-Path-Receiver Framework
Sources

- Rail Grinding

- Rail Dampers

- Low-impact Frogs

- Ballast Mat

- TDA

- Resilient Fasteners
 - Pandrol

- Floating Slab