Treatments at the Wheel/Rail Interface to Reduce Rail Transit Noise

Hugh Saurenman, Ph.D., P.E.
hsaurenman@atsconsulting.com

ATS Consulting
215 N. Marengo Avenue, Suite 100
Pasadena, CA 91101
(626) 710-4400
Tools for Reducing Wheel/Rail

Hugh Saurenman, Ph.D., P.E.
hsaurenman@atsconsulting.com

ATS Consulting
215 N. Marengo Avenue, Suite 100
Pasadena, CA 91101
(626) 710-4400
Los Angeles Rail Transit in 1930’s
Current Transit Projects in LA County

<table>
<thead>
<tr>
<th>Project</th>
<th>Cost</th>
<th>Type</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metro Orange Line Extension</td>
<td>$182M</td>
<td>BRT</td>
<td>Under construction</td>
</tr>
<tr>
<td>Crenshaw/LAX Transit Corridor</td>
<td>$1.21B</td>
<td>LRT</td>
<td>Design Build RFP stage</td>
</tr>
<tr>
<td>Regional Connector Transit Corridor</td>
<td>$1.4B</td>
<td>LRT</td>
<td>Design Build RFP stage</td>
</tr>
<tr>
<td>Exposition LRT Project Phase 1</td>
<td>--</td>
<td>LRT</td>
<td>Opened in May 2012</td>
</tr>
<tr>
<td>Exposition LRT Project Phase 2</td>
<td>$925M</td>
<td>LRT</td>
<td>Under construction</td>
</tr>
<tr>
<td>Gold Line Foothill Extension Ph. 1</td>
<td>$735M</td>
<td>LRT</td>
<td>Under construction</td>
</tr>
<tr>
<td>Gold Line Foothill Extension Ph. 2</td>
<td>--</td>
<td>LRT</td>
<td>Environmental review</td>
</tr>
<tr>
<td>Eastside Transit Corridor Phase 2</td>
<td>$1.27B</td>
<td>LRT</td>
<td>Environmental review</td>
</tr>
<tr>
<td>Green Line Extension to LAX</td>
<td>$200M</td>
<td>LRT</td>
<td>Alternatives Analysis</td>
</tr>
<tr>
<td>Sepulveda Pass Transit Corridor</td>
<td>$1.08B</td>
<td>RT</td>
<td>Initial Planning</td>
</tr>
<tr>
<td>South Bay Green Line Extension</td>
<td>$272M</td>
<td>LRT</td>
<td>Environmental review</td>
</tr>
<tr>
<td>West Santa Ana Transit Corridor</td>
<td>$240M</td>
<td>Undef</td>
<td>Alternatives Analysis</td>
</tr>
<tr>
<td>Westside Subway Extension</td>
<td>$4.07B</td>
<td>RT</td>
<td>Preliminary Engineering</td>
</tr>
</tbody>
</table>
Modern Urban Rail Transit Systems*

Western North America

<table>
<thead>
<tr>
<th>City/Region</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calgary</td>
<td>Light rail</td>
</tr>
<tr>
<td>Denver</td>
<td>Light rail</td>
</tr>
<tr>
<td>Edmonton</td>
<td>Light rail</td>
</tr>
<tr>
<td>Honolulu</td>
<td>Rapid transit</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>Rapid transit and LRT</td>
</tr>
<tr>
<td>Phoenix</td>
<td>Light rail</td>
</tr>
<tr>
<td>Portland, OR</td>
<td>Light rail</td>
</tr>
<tr>
<td>Sacramento</td>
<td>Light rail</td>
</tr>
<tr>
<td>Salt Lake City</td>
<td>Light rail</td>
</tr>
<tr>
<td>San Diego</td>
<td>Light rail</td>
</tr>
<tr>
<td>San Jose</td>
<td>Light rail</td>
</tr>
<tr>
<td>Seattle</td>
<td>Light rail</td>
</tr>
<tr>
<td>SF Bay Area</td>
<td>Rapid transit and LRT</td>
</tr>
<tr>
<td>Vancouver</td>
<td>Light rail</td>
</tr>
</tbody>
</table>

Eastern North America

<table>
<thead>
<tr>
<th>City/Region</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>Rapid transit</td>
</tr>
<tr>
<td>Baltimore</td>
<td>Rapid transit and LRT</td>
</tr>
<tr>
<td>Buffalo</td>
<td>Light rail</td>
</tr>
<tr>
<td>Charlotte</td>
<td>Light rail</td>
</tr>
<tr>
<td>Dallas</td>
<td>Light rail</td>
</tr>
<tr>
<td>Houston</td>
<td>Light rail</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Light rail</td>
</tr>
<tr>
<td>Miami</td>
<td>Rapid transit</td>
</tr>
<tr>
<td>Minneapolis</td>
<td>Light rail</td>
</tr>
<tr>
<td>Norfolk, VA</td>
<td>Light rail</td>
</tr>
<tr>
<td>St. Louis</td>
<td>Light rail</td>
</tr>
<tr>
<td>San Juan</td>
<td>Rapid transit</td>
</tr>
<tr>
<td>Toronto</td>
<td>Rapid transit and LRT</td>
</tr>
<tr>
<td>Wash., DC</td>
<td>Rapid transit</td>
</tr>
</tbody>
</table>

*List is not exhaustive and does not include commuter rail or streetcars!
Clearly noise is an issue for both new and existing systems

Questions are:

• What can be done other than put up sound walls?

• As systems age, will noise increase?

• What tools are available to reduce noise at the wheel/rail interface?
 o Monitoring track and wheel condition
 o Improved maintenance procedures
 o Wheel and track treatments (e.g. tuned vibration dampers)

• How big a difference will treatments make?
Definitions

• Potential wheel/rail noise sources
 o Rolling noise
 o Squeal from slip-stick interaction on rail head, flange/gauge face contact, restraining rail or guard rail contact
 o Impacts at frogs, joints, bad welds, wheel flats

• Roughness
 o Random roughness plus periodic roughness (corrugation)
 o Mathematical models assume:

\[
SPL = \ldots + 10 \log \left[\left(\frac{\rho c \omega}{p_0} \right) H_{cp}(k) \varphi_{mR}(k) \Delta k \right]
\]

where \(\varphi_{mR}(k) \) is the combined wheel and rail roughness (Remington, et al., 1974).
“Roughness”

Any longitudinal irregularity in rail surface

Random Roughness

\[
\text{frequency} = \frac{\text{speed}}{\text{wavelength}} \\
= 17.9 \times \frac{\text{speed (mph)}}{\text{wavelength (inches)}} \\
= 447 \times \frac{\text{speed (mph)}}{\text{wavelength (mm)}}
\]
“Roughness”
Any longitudinal irregularity in rail surface

Corrugation

frequency \(= \frac{\text{speed}}{\text{wavelength}}\)
\[= 17.9 \times \frac{\text{speed (mph)}}{\text{wavelength (inches)}}\]
\[= 447 \times \frac{\text{speed (mph)}}{\text{wavelength (mm)}}\]
“Roughness”

Any longitudinal irregularity in rail surface

Combined Corrugation and Random

\[
\text{frequency} = \frac{\text{speed}}{\text{wavelength}} = 17.9 \times \frac{\text{speed (mph)}}{\text{wavelength (inches)}} = 447 \times \frac{\text{speed (mph)}}{\text{wavelength (mm)}}
\]
Tools for Evaluating Noise

- On-board noise measurements to identify problem areas
- Detailed measurements at selected sites
 - Community noise
 - Rail roughness
 - Noise at 1m from near rail
 - Rail vibration decay rate
 - Rail Input Impedance
- Wheel input impedance
On-Board Noise Measurements
On-Board Noise Measurement, 2003

In-Car Noise, San Bruno to South San Francisco

A-Weighted Sound Level, dBA

Time, hh:mm:ss

ATSConsulting
acoustics, transportation + strategy
On-board Noise Measurement
Station to Station

[Graph showing speed and frequency over distance]

ATS Consulting
acoustics, transportation + strategy
Area of Interest
“Corrugation” from Rail Grinding
Rail Roughness Measurements
Rail Roughness Measurements

Measure vertical displacement in wear band over a small track section (typically 100 to 300m)
Average Roughness, 1/3 Octave Band Spectra

Roughness on North Bound Track, West Rail

Roughness on South Bound Track, East Rail
Derived Roughness "Coefficient"
Roughness Spectrogram, Site 3
Roughness Spectrogram, Site 4

Duwamish South Southbound East Rail

Roughness (dB re 1um)

Wavelength (mm)

Distance (m)

Wavelength (mm)
Close Proximity (1m) Noise Measurements
Is Noise from Wheel or Rail?

Example 1: Sound Transit Embedded track
Is Noise from Wheel or Rail?

Example 2: Sound Transit Aerial Structure
Conclusion from Close Proximity Measurements:

• Embedded track noise is dominated by noise radiated off of wheel
• Aerial structure noise is dominated by noise radiated off of rail
• Rail dampers may be effective at reducing noise on aerial structure
San Diego Trolley, the Right Way to Reduce Noise

- Environmental studies for Mid-Coast Corridor
- 11 Mile extension to San Diego Trolley from Old Town to University City
- Originally studied in early ‘90s.
- Projected:
 - Start of Construction: 2015
 - Operations: 2018
Noise Testing for Environmental Assessment

- Four locations, three ballast & tie, one aerial structure
- Three vehicle types
 - U2 and SD100 (high floor)
 - S70 (low floor)
 - US-S70 (low floor)
- Measurements:
 - Wayside noise
 - Train speed
 - Rail roughness
Site 2: Riverwalk Golf Course
Final San Diego Trolley Results

<table>
<thead>
<tr>
<th>Site</th>
<th>Track Type</th>
<th>Lmax, dBA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S70/US-70</td>
</tr>
<tr>
<td>1</td>
<td>Ballast & Tie</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>Ballast & Tie</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>Ballast & Tie</td>
<td>73</td>
</tr>
</tbody>
</table>

- Values normalized to 40 mph, 50 ft from track centerline, and 2-car trains.
- FTA suggested reference level: 77 dBA, 40 mph, 50 ft, single car, ballast & tie track.
- Equivalent levels on other LRT systems as high as 83 dBA.
Bottom Line for Mid-Coast Analysis

• Justified using a reference level of 75 dBA
• 2 dB lower than FTA recommendation
• Substantially lower than recently measured on similar LRT systems.
• Amount of noise mitigation (sound walls) substantially reduced.
• Lower reference level might be reasonable.
Overall Conclusions

• Tools are available for analyzing rolling noise
• Relatively simple measurements can lead to insights on where treatments are needed and what treatments will work
• Proper maintenance will result in lower noise levels
 o Specification is needed for rail grinding
 o Problem areas can be identified with on-board measurements
 o Problem wheels need to be identified and trued
• If San Diego Trolley can have low noise levels, why not all other transit systems?