A Comparison of ISO 9613-2 and Advanced Calculation Methods -- Predictions Versus Experimental Results

PART 1

Introduction

Overview

- A poll by Mediterranean Acoustics on LinkedIn showed that well above 50% of acousticians favour ISO 9613-2 for outdoor sound propagation.
- Nord 2000, Harmonoise, Concawe and other methods share the remaining 50% of those asked.
- Nord 2000, Harmonoise are advanced calculation models implemented in user friendly software.
- Some commercial software has several standards available in the same package.

Standards vs Independent Research

Standards

- Positive: standards can provide same answers by independent users
- Negative: perceived as dogma, and often provide inaccurate results
- By-products: provide widely accepted algorithms

Independent Research

- Detective work with lots of twists and turns in the plot
- It needs intuition and a stomach for the ups & downs
- By-products: unique algorithms – possibly less widely accepted

Software (SW) Based on Standards v. Independent Research

- SW based on standards provide: simpler code, fast and approximate results
- SW based on Research provides: complicated code, slower yet more accurate results than SW based on standards
What follows in this presentation

- Theoretical background of one software package - "OTL - Terrain" by PEMARD
- ISO 9613-2 background
- Presentation of comparison of results
- Discussions on results
- Conclusions

The sound pressure at a receiver location in Terrain

The A-weighted sound pressure at a receiver location in Terrain

\[10 \log \left[\sum_{i=1}^{N} \left(\frac{p_i \cdot e^{i \theta_i}}{R_i} \cdot a \cdot Q_i \cdot s \cdot Q_n \cdot D \right) \right] - A \]

coherent summation
- \(I \) is path loss of possible sound path between Source and Receiver
- \(P \) is a particular path's source sound pressure at 1m
- \(N \) is the number of paths between Source and Receiver
- \(n \) is the number of reflections within a particular sound path between Source and Receiver
- \(R \) is the total length of a particular sound path between Source and Receiver

The sound pressure at a receiver location in ISO

\[10 \log \left(\sum_{i=1}^{N} 10^{0.1(A_i + B_i - A_{iso} - A_{iso})} \right) \]

- \(A_i \) is the octave-band sound power level, in decibels, produced by the point sound source relative to a reference sound power of one picowatt (1 pW)
- \(B_i \) is the directivity correction, in decibels, that describes the extent by which the equivalent continuous sound pressure level from the point sound source deviates from a specified direction from the level of an omnidirectional point sound source producing sound power level \(P \). \(D \) is the directivity index \(D \) of the point sound source plus an index \(D \) that accounts for sound propagation into solid angles less than 4\(\pi \) steradians (for an omnidirectional point sound source radiating in free space, \(D = 0 \) db)
- \(A_{iso} \) is the attenuation due to geometrical divergence
- \(A_{iso} \) is the attenuation due to atmospheric absorption
- \(A_{iso} \) is the attenuation due to the ground effect
- \(A_{iso} \) is the attenuation due to a barrier
- \(A_{iso} \) is the attenuation due to miscellaneous other effects

ISO 9613 – 2, background

- Empirical method adopted as a standard in 1996
- Lends itself for spreadsheet calculations
- There were good reasons at that time for adopting ISO 9613-2 as a standard

But
- There is ambiguity in its implementation
- Two different users can come up with different results

Presentation of comparison of results among, OTL – Terrain, ISO 9613-2 and published measured data.
Published measured data used were also used for the validation of Nord2000 model.

- Cases selected from measured data are based on distance, with and without barrier. Also, chosen to be simple to be handled by ISO 9613-2.

Cases used for the validation of NORD 2000 (www.delta.dk) and implemented in ISO 9613-2 and OTL – Terrain.

<table>
<thead>
<tr>
<th>Distance S - R</th>
<th>Case 13</th>
<th>Case 17</th>
<th>Case 33</th>
<th>Case 36</th>
<th>Case 91</th>
<th>Case 92</th>
<th>Case 77</th>
<th>Case 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• All results in Excess Attenuation (EA i.e. Transfer Function) which is the effect of the environment on direct sound.

• Results: Black dots represent measurements results, the blue curve OTL – Terrain results and the red curve ISO 9613-2 results

• Geometry
 - Sound paths between Source and Receiver up to 3rd order diffraction
 - Mapping, using OTL – Terrain, either on vertical or horizontal planes
 - Depending on the case, mapping shows EA of ground, EA of barrier, level with or without barrier
Case History

Traffic Noise and Residential Abatement
PART 4
Discussion on Comparison of Results

- Measurement data
- OTL-Terrain results
- ISO 9613-2 results

Measurement Data

- There is little information on methodology used to obtain results for the cases examined
- We were able to track down some of the cases where the methodology is given but which are not included in this presentation
- K.B. Rasmussen, the person who conducted some of the sound measurements, mentions that for some cases there was uncertainty about the choice of flow resistivity.

OTL – Terrain Results

- Fair match between OTL-Terrain & measurements
- Anticipated better agreement
- More information on measurements allows better modelling
- We have conducted measurements to simulate diffraction [scattering] from stone steps in ancient theatres.
- Lateral shifts of source or receiver with respect to the barrier produce significant change in results.
ISO 9613-2 Results

• Apparent deviations from measured data
• Lack of detail to interpret sound propagation mechanisms
• Ambiguity of the standard could allow different results

Discussion On Comparison Of Results

PART 5

Conclusions

ISO 9613-2

• Empirical method
• Simple in concept to be understood
• Simple to implement
• Widely used since its publication in 1996
• It has served the acoustical community well
But
• Inaccurate and imprecise

Advanced Calculation Methods offer

Sound rays in a 3D environment carrying information on how to:
• Reduce intensity with distance
• Interact with atmosphere, turbulence and refraction
• Reflect from objects
• Diffract around and scatter from objects
• In the near future, lose intensity through structures

In the future advanced calculation methods could offer...

One calculations engine for:
• Outdoor Sound Propagation
• Building acoustics
• Room acoustics
• Duct-borne sound transmission and others
But
• They are computationally expensive

Conclusions

• Nowadays technology allows the replacement of old empirical methods with new scientific methods
• Advanced calculation methods offer better results
But
• Their implementation in software applications should offer more answers than questions
• Users need a better understanding of the science behind them in order to properly interpret results
• They need to serve the user and not the other way round
We say,
"The less time one needs to use a software application the better the application is"