Introduction

- Victoria is regarded (at least in Australia) as a leader in the architectural design of noise barriers.
- This presentation will be more ‘show’ and less ‘tell’
- I’ll describe the local context, describe our approach, then show what our noise barriers look like.
- Most photos are labelled with latitude and longitude, so you can find them on Google Earth street view.
Our State

Victoria –
- Located in south eastern Australia
- Area 237,000 km² (about the area of Minnesota)
- Population 5,500,000 (about the same as Minnesota)

Melbourne -
- Capital and largest city in Victoria
- Population 3,999,982 (a bit bigger than Minneapolis – St Paul, but not as cold)
- Urban freeway network is still under construction
- Railway construction recently resumed (post 1930)
- Noise barriers on most urban freeways but not railways
Melbourne
Why bother

Good architectural design:
- Enhances urban design
- Responds to site context
- Can function as wayfinding
- Discourages vandalism

- Results in reflective rather than absorptive barriers
- Can result in additional upfront capital costs
Our approach

- Noise barriers are constructed for new freeways and certain arterial roads
 - Mandatory design objective 63 dB(A) L_{A10} (18 hour) after 10 years
 - No limit to reasonable barrier height => up to 14 m

- Noise barriers are constructed along existing freeways where noise levels exceed 68 dB(A) L_{A10} (18 hour)
 - Constrained by funding

- Property developers are required to provide noise barriers when they develop beside existing freeways.
Our approach

- Noise modelling using CoRTN algorithm
- Acoustic consultant defines barrier height and location
- Engage architect to develop concept and detailed design, in consultation with project engineers, ecologists, hydrologists and in-house urban designers
- Engage architect to develop concept and design development prior to award of contract
- Architect collaborates with project engineers, ecologists and landscape architects
Materials

Generally use reflective materials with sufficient mass to ensure noise transmission is insignificant relative to diffraction

- Plywood (inexpensive, mostly used for retrofitting)
- Precast concrete
- Transparent acrylic
- Steel – Corten and bridge decking
- Stone gabions
- High Density Polyethylene
- Photo Voltaic Panels
- Integrated housing as noise wall
- New Jersey Barriers
- Earth mounds
Ringwood Bypass

Victoria’s first architecturally initiated noise barrier

Pre cast concrete

Approx 20 years old. Created some controversy when installed due to strong colour (since faded somewhat).
Geelong Ring Road

Corten Steel and Acrylic
Overshadowing study
Ribbon concept
Ribbon execution

Corten steel
Pedestrian bridge & Noise Barrier

Lat -37.7° Long 145.0°
Embossed acrylic with LED lighting

Lat -37.68°, Long 145.0°
Embossed acrylic with sculptural feature

Lat -37.7°, Long 145.0°
Precast Concrete

Transparent acrylic top to reduce visual bulk

Lat -37.8°, Long 145.1°
Precast Concrete

Lat -37.8°, Long 145.1° approx
More recent plywood barriers have panels clamped inside H section steel columns.
Precast Concrete with Acrylic

Lat -37.9°, Long 145.2° approx
Painted Precast Concrete

Lat -37.7°, Long 144.8°
Rock Gabion Noise Barrier Lat -38.0° Long 144.4°
Zinc noise wall attached to concrete barrier

Lat -37.4°, Long 144.5°
Two Layer Roofing Steel with Planting
PV Panels Above Precast Concrete

Lat -37.7°, Long 144.9°
Barrier Integrated Housing

Lat -37.8°, Long 144.8°
City Link Noise Barrier

Lat -37.8°, Long 144.9°
Parkland behind City Link Barrier

Lat -37.8°, Long 144.9°
Painted Concrete & Other Features

Lat -37.8°, Long 144.9°
Bird and Worm

Lat -37.9°, Long 145.2°