INFLUENCE OF PAVEMENT MATERIAL PROPERTIES ON TIRE / ROAD SURFACE NOISE #### Krishna Prapoorna Biligiri Kamil E. Kaloush Transportation Research Board ADC40 Summer 2007 Transportation-Related Noise & Vibration Meeting, San Luis Obispo, California 24th July 2007 #### **ROAD TRAFFIC NOISE** - A major problem in metropolitan areas. - Automotive technology in the last 25 years >> noise decreased by 6 dB - Traffic volume adds about 8 to 10 dB to the highway noise. - High concrete sound barriers (walls) along city freeways mitigates highway noise, but they are very expensive. - Usage of Open Graded / Porous Friction course pavements has mitigated highway noise successfully around the world. #### NOISE EVALUATION STUDIES #### **DOMINANT NOISE FACTORS?** ## VISCOELASTIC PROPERTY = E* DYNAMIC MODULUS TEST - Recommended Simple Performance Test under the NCHRP Project 9-19. - Major Input Parameter for: Mechanistic Empirical Pavement Design Guide (MEPDG). - ASU has largest database on E* tests on asphalt mixtures (including modified mixes). - Can it be used as one of the parameters to assess Tire / Pavement Noise? #### DYNAMIC COMPLEX MODULUS (E*) - $|E^*|$ = Dynamic Complex Modulus = σ_o / ε_o - σ_0 = peak dynamic stress amplitude (kPa / psi) - ε_0 = peak recoverable strain (mm/mm or in/in) - Φ = phase lag or angle (degrees) = VISCOELASTIC PROPERTY ### VISCOELASTIC PROPERTY = PHASE ANGLE, \$\phi\$ $$tan \phi = E'' / E'$$ - \blacksquare E* = E' + iE'', - E' = Storage (Elastic) Modulus = $(\sigma_0 / \epsilon_0) \cos \phi$ - E" = Loss (Viscous) Modulus = $(\sigma_o / \epsilon_o) \sin \phi$ - Mathematically, $$\phi = (t_i / t_p) \times (360)$$ t_i = time lag between a cycle of stress and strain (sec) t_p = time for a stress cycle (sec) - Expressed in Degrees - For a pure elastic material, $\phi = 0^{\circ}$ - For a pure viscous material, $\phi = 90^{\circ}$ #### **OBJECTIVE** - To analyze E* test results (specifically Phase Angle ϕ) for asphalt mixtures to assess the tire / pavement surface noise characteristics. - Hypothesis: more viscous behavior would provide more noise dampening effect, leading to less tire / pavement surface noise. #### **MIXTURES** | Mix | Conventional
Dense
Graded | A-R Open
Graded
(AR-ACFC) | A-R Gap
Graded
(ARAC) | |--------------------|---------------------------------|---------------------------------|-----------------------------| | Total No. of Mixes | 148 | 26 | 34 | | Air Voids (%) | 4-8 | ~18 | 8-11 | - Φ = Viscoelastic Property - Storage and Loss Moduli # PHASE ANGLE RELATIONSHIPS Conventional vs. Asphalt Rubber Conventional Dense Graded Mix Asphalt Rubber Mix #### E* / \phi TEST DATA & RESULTS | Mix | Conventional
Dense Graded | A-R Open
Graded
(AR-ACFC) | A-R Gap
Graded
(ARAC) | |-----------------------|------------------------------|---------------------------------|-----------------------------| | Total No. of Mixes | 148 | 26 | 34 | | Air Voids (%) | 4-8 | ~18 | 8-11 | | Avg. Peak φ (degrees) | 29 | 42 | 37 | #### E* VERSUS E' - E'' SCHEMATIC RELATIONSHIP # TYPICAL E* VS. E'-E'' RELATIONSHIPS - E' = E'' means less noisy pavement. - Conventional mix: elastic at low E* values (high temperatures and low frequencies). - AR mixes: E' = E'' at high temperatures => modulus viscoelastic properties of the mix. #### PHASE ANGLE VS. CPX Sound Intensity | Surface Type | Sound Intensity [dB(A)] CPX Method | | |--------------------------------|------------------------------------|--| | AR-ACFC | 96-97 | | | ARAC | 98-99 | | | HMA
Conventional | 100-102 | | | Portland
Cement
Concrete | 101-109 | | #### **CONCLUSIONS** ■ Phase angle potentially a tire / pavement surface noise discriminating parameter between asphalt concrete mixtures. - Good correlation between the average ϕ of each mix type and the sound intensity measured for each surface type >> Viscoelastic Property. - Viscoelastic properties of the mix from the laboratory E* test <u>contribute</u> to the explanation of the tire/pavement surface noise reduction observed in the field. ### **Questions & Comments**