

Psychoacoustics based metrics for drone noise impact assessment

Transport Research Board – 2021 Aviation Group Virtual Mid-Year Meetings (AV030)

3rd June 2021

Dr Antonio J Torija Martinez

Acoustics Research Centre (University of Salford)

Problem Statement

 The noise generated by drones does not resemble (qualitatively) the noise of contemporary aircraft.

- Existing noise certification methods are not optimal for drones, and noise metrics are needed to better assess subjective response to drone noise.
 - Investigation of psychoacoustic metrics more likely to aid the assessment of subjective response to drone noise.

03/06/2021

Quadcopter vs. Aircraft/Car

Torija Martinez, AJ and Li, Z 2020, Metrics for assessing the perception of drone noise, in: e-Forum Acusticum 2020, 7th-11th December 2020, Online.

Preference rating of the quadcopter sound samples is **33%** and **35%** lower than the preference of the aircraft and road vehicle audio samples respectively.

*Note: All sounds set at $L_{Aeq.4s} = 65 \text{ dBA}$

03/06/2021

Experiment: Human Response to Drone Noise

University of Salford Acoustics

- 8 types of drones (from 1 to 12 kg)
- Operations: Take-off, Landing, Hover and Flyover.
- Altitude: from 2 to 60 m
- L_{Aeq}: from 37 to 71 dBA
- Some drone sounds provided by VOLVE/FAA: <u>Noise</u>
 <u>Measurement Report: Unconventional Aircraft Choctaw Nation</u>
 <u>of Oklahoma: July 2019</u>

Nicholls and Torija, 2021: An investigation into human response to unmanned aerial vehicle noise. To be presented in Inter-noise 2021.

Experiment: Human Response to Drone Noise

Salford Acoustics

Multiple Linear Regression

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	
1	.944 ^a	0.891	0.873	0.06016655	
2	.943 ^b	0.890	0.876	0.05956483	
3	.943 ^c	0.889	0.878	0.05900900	

a. Predictors: (Constant), Impulsiveness, Sharpness (Aures), Fluctuation strength, Roughness (Hearing model), Tonality (Aures), Loudness (DIN45631)

Multilevel model with subject-dependent intercepts and fixed regression slopes

Parameter	Estimate	Std.	df	t	Sig.	95% Confidence Interval	
Parameter		Error	uı			Lower	Upper
Intercept	0.074151	0.043616	1332.371	1.700	0.089	-0.011413	0.159715
Loudness	0.008036	0.000775	2101.000	10.373	0.000	0.006517	0.009556
Sharpness	0.109507	0.013534	2101.000	8.091	0.000	0.082967	0.136048
Fluctuationstrength	2.465645	0.283398	2101	8.700	0.000	1.909875	3.021414
Tonality	-0.218453	0.088759	2101	-2.461	0.014	-0.392518	-0.044387
Roughness	-0.447973	0.200772	2101	-2.231	0.026	-0.841706	-0.054240
Impulsiveness	-0.169949	0.091062	2101.000	-1.866	0.062	-0.348529	0.008632

Results in line with: Gwak et al., 2020. Sound quality factors influencing annoyance from hovering UAV. JSV

03/06/2021 5

b. Predictors: (Constant), Impulsiveness, Sharpness (Aures), Fluctuation strength, Tonality (Aures), Loudness (DIN45631)

c. Predictors: (Constant), Impulsiveness, Sharpness (Aures), Fluctuation strength, Loudness (DIN45631)

Experiment: Human Response to Drone Noise

Salford Acoustics

*Note: Only flyovers

What will be the Influence of Drone Operations on Soundscape Perception?

University of Salford MANCHESTER

Salford Acoustics

- Effects of a hovering small quadcopter on urban soundscapes perception
 - Quiet areas: reported annoyance was about 7 (scale from 0 to 10) with drone noise, regardless the overall L_{Aeq} in the location.
 - L_{Aeq} does not account for the particular noise features of drone noise.

Source: <u>Torija et al. (2020)</u>: <u>Effects of a hovering unmanned aerial</u> <u>vehicle on urban soundscapes perception</u>. <u>Transport Res D-TR E</u> 78, 102195

Questions?

Dr Antonio J Torija Martinez @ajtorija