

# Sound Advice for Mitigating Roadside Rumble Strip Noise Levels

Bruce Rymer, TE, PE
Caltrans
Dave Buehler, PE, INCE Bd. Cert.
ICF
Sacramento, CA







#### **Rumble Strips**

- Rumble strips are a safety device created by milled or raised roadway patterns
- Primary function is to elevate noise and vibration levels inside a vehicle cabin to warn drivers when their vehicle has departed from the normal wheel path within a lane
- Typically placed along the centerline, edge line, or shoulder of two lane roadways but can also be applied to multi-lane facilities











#### **Rumble Strips**

- Wayside noise generated by rumble strips has increasingly become a concern for the public
- Noise concerns are primarily an issue on rural highways where traffic volumes are relatively low
- Proposals to add rumble strips to rural highways are being met with opposition by neighbors because of noise
- Caltrans is under pressure to respond to public criticism of rumble strip safety projects and we need to think critically about how rumble strip noise levels can be mitigated







#### **Rumble Strips**

- In addition most traffic safety engineers have little or no understanding of highway acoustics
- Caltrans is developing a technical advisory:
  - provide acoustic-related guidance for design engineers to reference
  - to provide them with a menu of options to consider for mitigating rumble strip noise
- This presentation discusses these potential noise mitigation strategies
- Builds upon the presentation rumble strip research that Bruce Rymer and Paul Donavan gave at the 2016 ADC40 meeting in Montana







## Mechanics of Warning Device Tire/Pavement Interaction

 Raised pavement makers (RPMs or Botts Dots) create a very positive texture (above grade) that punches the tire and elevates noise levels.









## Mechanics of Warning Device Tire/Pavement Interaction

- The standard Caltrans grind rumble strip pattern also has a transverse texture element to it that we know from quiet pavement studies is an inherently louder pattern.
- Transverse textures are oriented perpendicular to tire movement and typically also punch the tire and elevate noise levels.









## Mechanics of Warning Device Tire/Pavement Interaction

- Sinusoidal pattern or "mumble strip"
- The sinusoidal pattern is below grade and has a rounded shape that follows the radius of a typical passenger car tire and punches it less and this helps to reduce exterior noise levels.











#### **Key Design Parameters for Mumble Strips**

- Lower roadside noise levels
- Maintain or increase interior sound and vibration levels
- Minimal disturbance to vehicle dynamics
- Bicycle friendly
- Fit within roadway cross-section
- Limit depth of material removal
- Cost effective
- Easy to construct







#### **Key Design Parameters for Mumble Strips**

- The idea for this sinusoidal rumble strip "mumble strip" combines concepts initiated in European studies, General Motors sound and vibration work, and Caltrans' quieter pavement studies
- Dr. Paul Donavan of Illingworth and Rodkin developed an optimal shape for the sinusoidal rumble strip profile based upon tire geometry, tire dynamics, and typical light vehicle response functions
- The goal achieved by the sinusoidal rumble strip was to maintain or elevate interior noise and vibration levels and reduce exterior pass-by noise levels







#### **Rumble Strip Noise Mitigation Strategies**

- Strategy 1 Mumble Strips
- Strategy 2 Rumble Strip Setback
- Strategy 3 Combine 1 and 2
- Strategy 4 Lower Potential for Rumble Strip Strikes
- Strategy 5 Horizontal Curves
- Strategy 6 Short walls or berms







1. Lower roadside noise levels at the rumble strip source by installing a quieter sinusoidal "mumble" strip









- In 2012, mumble strips following the recommended design were installed by Caltrans District 1 in Humboldt County along US Highway 101
- These mumble strips were evaluated for exterior noise and interior disturbance
- Conventional warning devices, specifically, ground rumble strips and pavement markers, also were evaluated











Ground rumble strip





Raised marker













- Measured with vehicle traveling at 60 mph:
  - Exterior pass-by noise at 25 feet
  - interior noise
  - vibration levels on the seat track and on the steering column
- Later, a fifth vehicle was tested in the same manner with the addition of onboard sound intensity and body panel vibration measurements







- Relative to conventional warning devices, mumble strips reduced the overall A-weighted exterior noise levels by about 6 decibels for four different types of passenger vehicles
- Interior disturbance levels created by the mumble strips were generally comparable or better than those generated by the ground rumble strips























- In April 2015 FHWA has published a guidance document entitled "Rumble Strip Implementation Guide: Addressing Noise Issues on Two-Lane Roadways
- This guide states that studies conducted in Minnesota have shown that:
  - when rumble strips end approximately 650 feet prior to residential or urban areas, the noise impacts are tolerable
  - at a distance of 1,640 feet, the noise generated from rumble strips is negligible















- Average rumble strip passby Lmax is about 12.6 higher than auto passby Lmax on average pavement
- Rumble strike is a point source so calculate the distance at which the rumble strip strike sound level is equal to the auto passby
- Simple hard site point source calculation
  - Direct distance/Distance to receptor =  $10^{(12.6/12)}$  = 4.3









| Rumble Strip Type    | Direct Distance Factor* |
|----------------------|-------------------------|
| Standard – hard site | 4.3                     |
| Standard – soft site | 3.1                     |
| Mumble – hard site   | 2.0                     |
| Mumble – soft site   | 1.7                     |







| Distance to Receptor | Setback from Receptor (4.3 hard site factor) |
|----------------------|----------------------------------------------|
| 50                   | 215                                          |
| 100                  | 430                                          |
| 150                  | 645                                          |
| 200                  | 860                                          |
| 250                  | 1075                                         |
| 300                  | 1290                                         |
| 350                  | 1505                                         |
| 400                  | 1720                                         |
| 450                  | 1935                                         |

~ "tolerable"







#### Strategy 3 – Combine 1 and 2

Apply mumble strips and setbacks

| Distance to Receptor | Setback from Receptor (2.0 hard site factor) |
|----------------------|----------------------------------------------|
| 50                   | 100                                          |
| 100                  | 200                                          |
| 150                  | 300                                          |
| 200                  | 400                                          |
| 250                  | 500                                          |
| 300                  | 600                                          |
| 350                  | 700                                          |
| 400                  | 800                                          |
| 450                  | 900                                          |







#### Strategy 4 - Lower Potential for Rumble Strip Strikes

- Limit or eliminate installations where maneuvering traffic and driver decision points are made:
  - through commercial/town centers,
  - bordering two-way left turn lanes,
  - high volume turning areas,
  - driveways







#### **Strategy 5 – Horizontal Curves**

 Place rumble strips beyond off-tracking vehicle wheels around horizontal curves if space and traffic safety considerations allow









#### Strategy 6 – Short walls or berms

If space allows and cross sectional geometry facilitates it, install a low height noise barrier, either a solid barrier, or a landscaped berm, between the rumble strips and the receptor









#### **Questions**





