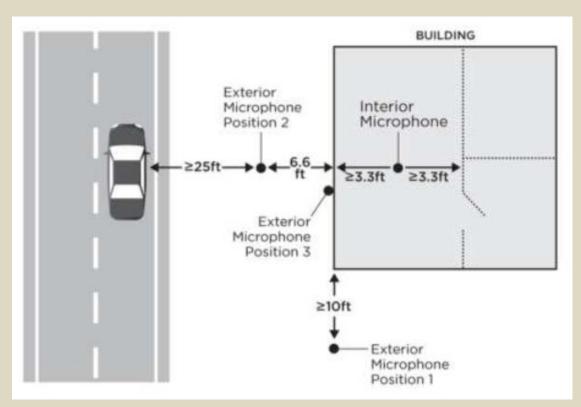
Application of The New FHWA Measurement Handbook and Caltrans Guidance: Interior-Exterior Measurements

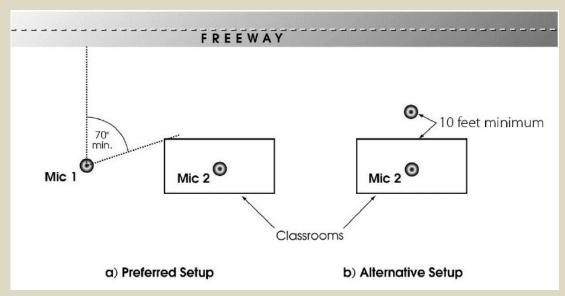
Roberto Della Neve L. Associate, ATS Consulting


Judy Rochat, Ph.D.
Principal Associate, CrossSpectrum Acoustics

July 2018

FHWA Guidance

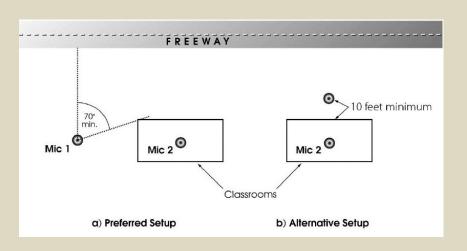
- Three different microphone positions
- Notice minimum distances
- Microphone Position 1 in line with façade
- Road parallel with building façade

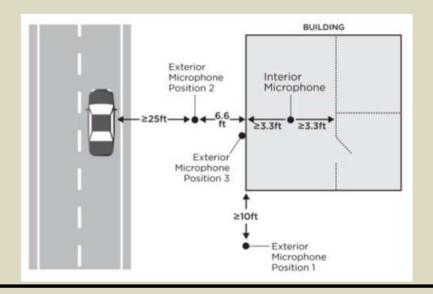


From FHWA's forthcoming Noise Measurement Handbook Section 6.1

Caltrans Guidance

- Two different setups
- Minimum distance of 10 ft in Alternative Setup
- Microphone 1 in
 Preferred Setup not in
 line with façade but with
 interior microphone
- Road parallel with building façade


From Caltrans' 2013 Technical Noise Supplement (TeNS) Section 3.3.5


Similarities

Differences

- Both seek to compare the noise in the interior to a free field case
- In their secondary setups, adjustments are made to the exterior levels to compensate for reflections (FHWA) or distance (Caltrans)

- Microphone locations
- Number of interior microphones
 - o Caltrans requires one
 - FHWA suggests multiple for big rooms
- Adjustment factors
- Other minor procedural differences

Measurement Location

- Part of a project in the Los Angeles area
- High density area with buildings close to highways
- Constant flow of traffic at high speeds
 - Loud source
 - Continuous noise source
- Wide variety in geometries and complexities for our case studies

Site 1 - Overview

- Fortunate geometry allows for a direct comparison of both Caltrans methods
- Reflections from other surfaces are unavoidable

Site 1 - Results

	Measured Levels (dBA)	Building Insertion Loss (dBA)
Interior Microphone	40.1	
Mic 1 – Caltrans Preferred	75.5	$35.4 - 1^a = 34.4$
Mic 2 – Caltrans Alternate	75.1	$35.0 - 1^a = 34.0$

a – Adjustment based on distance difference

Site 2 - Overview

 Evaluation of FHWA's and Caltrans' preferred setups

 Exploration of the multiple microphone setup suggested by FHWA

Site 2 - Results

	Measured Levels (dBA)	Building Insertion Loss (dBA)
Interior Mic 1 – room center	41.6	
Interior Mic 2 – near façade	40.8	
Exterior Mic 1 – aligned with façade	62.8	21.2 or 21.9 (FHWA)
Exterior Mic 2 – aligned with room's center	62.7	21.1 (Caltrans)

Site 3 - Overview

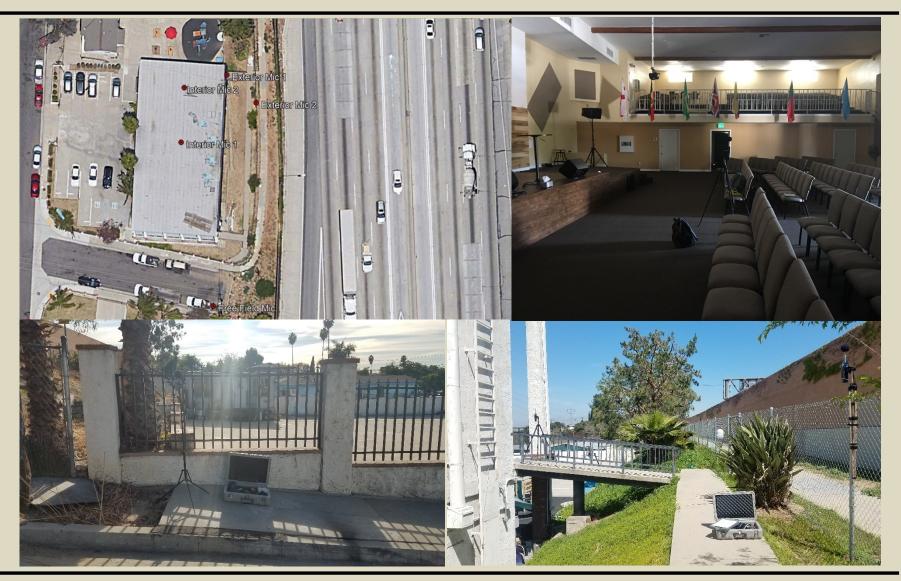
- Site could not accommodate exterior measurements off to the side
- Perpendicular to the highway allowed for exploring the effect of increasing distance from an exterior microphone to the façade, i.e. the effect of reflections
- Distance from highway to façade about 155 ft

Site 3 - Results

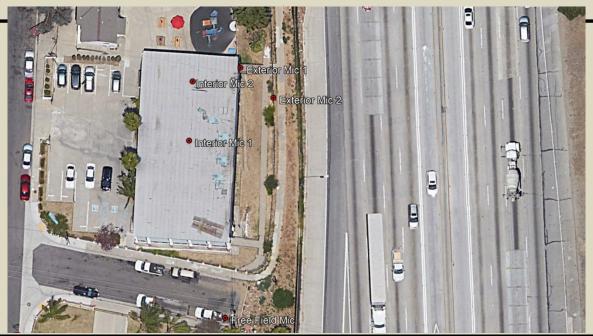
	Measured Levels (dBA)	Building Insertion Loss (dBA)
Interior Mic 1	38.3	
Exterior Mic 1 – 6.6 ft from façade (FHWA required)	68.4	$30.1 - 2^a = 28.1$
Exterior Mic 2 – 10 ft from façade (Caltrans minimum)	68.6	30.3 – 1 ^b = 29.3
Exterior Mic 3 – 25 ft from façade	68.4	30.1 – 1 ^b = 29.1

a – Adjustment based on reflection estimates from ANSI/ASA & ASTM; b – Adjustment based on distance difference

Site 4 - Overview


- Unexplored geometry in either guidance:
 - Existing sound barrier very close to the building
- A lot of reflections
- Raises the question of exactly what energy we want to account for

Site 4 - Images


Site 4 - Results

FHWA Methodology	Measured Levels (dBA)	Building Insertion Loss (dBA)
Interior Mic 1 – room center	40.4	
Interior Mic 2 – balcony	41.2	
Exterior Mic 1 – FHWA, min distance impossible	69.9	28.7 or 29.5
Free Field Mic - FHWA	62.1	20.9 or 21.7

Site 4 - Results

Caltrans Methodology	Measured Levels (dBA)	Building Insertion Loss (dBA)	
Interior Mic 1 – room center	40.4		
Exterior Mic 1 – Caltrans	69.9	$29.5 - 1.5^{a} = 28.0$	
Exterior Mic 2 – 22 ft from façade, 15 ft from sound wall	71.2	$30.8 - 2.4^{a} = 28.4$	
Free Field Mic - Caltrans	62.1	$21.7 - 1.5^{a} = 20.2$	
a – Distance adjustments based on a simplified TNM model			

Summary

- Ideal sites are rare though certainly welcome. Many sites will present challenges that will force you beyond guidance.
- Acoustical reasoning must be employed to find the appropriate microphone location for the site's geometry.
- Sound walls especially when close to the receptor provide a significant increase in the amount of energy that reaches the façade.
- The procedure described in both sets of guidance produce fairly similar results despite significant differences in the setup.

Questions?

