Highway Barrier Reflections Screening Tool

Keith Yoerg Associate, ATS Consulting

July 2017

NCHRP Project No. 25-44

- Two main objectives:
 - Determine spectral noise level characteristics in the presence of a single noise barrier on the opposite side of the road
 - Summarize results to help understand actual and perceived effects of a barrier
- Phase 1: barriers with reflective surfaces
 - Sound levels higher in presence of barrier
 - Frequency-specific differences varied by site
 - Greater effects farther from road and higher above ground

NCHRP

Web-Only Document 218:

Field Evaluation of Reflected Noise from a Single Noise Barrier— Phase 1

William Bowlby Rennie Williamson Darlene Reiter Clay Patton Geoffrey Pratt Bowlby & Associates, Inc Franklin, TN

Ken Kaliski Karl Washburn RSG White River Junction, VT

Judy Rochat ATS Consulting Pasadena, CA Ahmed El-Aassar Harvey Knauer Environmental Acoustics, Gannett Fleming, Inc. Harrisburg, PA

Gonzalo Sanchez Doug Barrett Sanchez Industrial Design, Inc. Middleton, WI

Contractor's Final Report for NCHRP Project 25-44 Submitted September 2015

TRANSPORTATION RESEARCH BOARD
The National Academies of
SCIENCES · ENGINEERING · MEDICINE

Copyright National Academy of Sciences. All rights reserved.

Purpose of Screening Tool

- Estimates increased traffic noise due to reflections off a barrier on the opposite side of the road
 - Used when only one side of the road has a barrier
- Excel spreadsheet provides a conservative estimate of the increase in noise levels
- If the estimated increase is >=1 dB, a refined analysis using the Traffic Noise Model (TNM) or other modeling tool should be considered
- Results presented today are preliminary still under NCHRP review

Path Length Difference Calculation

- Calculations are based purely on path lengths
- Direct-path & reflected-path sound waves combine, adding
- Spreadsheet calculates change in direct & reflected sound levels – computes sum

Assumptions

- Line source & geometrical spreading
- Only highway noise is considered
- Barrier exists at the reflection point
 - Length, height, and continuity of barrier assumed to be in place for a reflection to occur

Input Tabs

"Based on distances"

direct path length	70
distance from traffic noise source to barrier	100
source offset (distance up (-) or down (+) road)	200
direct path shielding amount (dB)	
barrier reflected path shielding amount (dB)	

Increase in sound due to reflections (dB) 2.1

"Based on coordinates"

Source

Receptor

Barrier

Χ	Υ	Z	Height
200	0	()
0	-70	(5
	100		

direct path shielding (dB) barrier reflected path shielding (dB)

Increase in sound due to reflections (dB)

2.1

Source location

- Using the centerline of all traffic lanes provides an approximation of barrier reflection contribution from all lanes
 - o Can be (but is not always) the center of the median
- "Direct Path Length" is the minimum, perpendicular distance between the centerline and the receptor

Source Offset

- Tool allows for calculations where the source is up- or downstream of the receptor
 - Useful if barrier is not directly across the highway from the receptor

An offset source will produce a larger noise increase due to

the larger path difference

 However, the direct path will not be as loud as for the zero offset location

Shielding

- Existing shielding can be added for direct- or reflected-path
- Locations with median barriers taller than the standard 32inch safety barrier can be modeled with reflected shielding of 2 dB
 - Estimates for shielding from anything that blocks the line-of-site can be included

Tall Barrier (Briley Parkway)

Output

- Results are presented in terms of decibel increase in highway sound due to reflections
- The tool does not predict actual noise levels
 - Sound engineering judgement should be used when interpreting results
 - Background noise may render barrier-reflected noise increases as negligible, especially if the noise is 10 dB above traffic noise

Other considerations

- Important factors that are not included in tool analysis:
 - Existing noise from other sources
 - Ground effects
 - Meteorological effects
 - Frequency-dependent propagation & comb filtering
- Results from tool most closely match unweighted decibel levels
 - This is also slightly more conservative than A-weighted results

Validation

- Estimates from screening tool were compared to unweighted effects measured during Phase 1
- SR-71 has a large range for measured values at 447 ft
 - Large distance allows for greater impact from meteorological conditions

Conclusions

- Tool is preliminary still under review by NCHRP
- Screening tool provides a conservative estimate of the increase in noise levels due to barrier reflections
 - Identifies areas where detailed analysis is not necessary
- Sound engineering judgement should be used when considering both the setup and results

Questions?

