

On-Board Sound Intensity Tests on Quieter Pavements in Austin, Texas

Manuel Trevino
July 2017

Austin District Study

- TxDOT Austin District interest for quieter pavements
- Tire/pavement noise tests (OBSI) from 2014 to present
- Thin overlay mixes (TOM) placed for noise reduction purposes
- OGAC surfaces also placed to reduce noise
- Concern for louder surfaces (e.g., seal coats)

- Non-structural hot-mix asphalt mixes placed in thin lifts of about 2.5 cm (1 in.) thick, although some are as thin as 1.25 cm (0.5 in.)
- Used by TxDOT in various districts
- Used by the Austin District for noise abatement purposes

Conventional Overlay Mixes

- Typical HMA overlays are about 5-cm (2-in.) thick
- Rehabilitation technique for all pavement types
- Improve surface characteristics
- Extend pavement service life

- Developed as an alternative to conventional overlays for reducing life-cycle costs
- Preserve pavements exhibiting surface distresses such as raveling, aging, bleeding, minor cracking, minor disintegration, texture loss, skid resistance loss
- Enhance pavement performance and extend its service life

Benefits:

- Improve user serviceability (i.e., smoothness and comfort)
- Skid resistance
- Splash and spray reduction
- Noise reduction
- Reduced life-cycle costs
- No loose stones
- No curing time required

- High-quality aggregate
- Polymer-modified asphalt
- High asphalt content
- Excellent cracking resistance
- Acceptable rutting resistance
- Noise generation is not overly sensitive to aggregate gradation or asphalt content

• In Texas, used in:

- In Texas, used in:
 - Austin
 - Beaumont
 - Houston
 - Tyler
 - Wichita Falls

Permeable Friction Courses (PFC)

- Open-graded asphalt pavements
- Normally considered the quietest pavement type
- Some PFCs do not maintain their porosity over time due to clogging and compaction
- May have a reduced service life because of raveling and surface aggregate loss
- Cannot be used in areas subjected to freezing

Pavements Studied

- Thin Overlay Mixes (TOM):
 - Interstate 35
 - RM 12
 - RM 3238
 - US 183A FR
- PFC
 - Interstate 35
 - FM 1431
 - SH 195
- DGAC
 - Ronald Reagan Blvd.

Pavements Studied

- 21.5-km (13.36-mi)
- From the Bell/Williamson County line to Lakeway Dr., near Georgetown

IH-35

THE UNIVERSITY OF TEXAS AT AUSTIN

THE UNIVERSITY OF TEXAS AT AUSTIN

- Ultra-thin overlay: 1.25 cm (0.5-in.) thick
- 10 km (6.21 mi) from just south of US 290 to Wimberley city limits
- Originally resurfaced with a seal coat.
 Replaced with the ultra-thin pavement.

THE UNIVERSITY OF TEXAS AT AUSTIN

THE UNIVERSITY OF TEXAS AT AUSTIN

- 12.9-km (8-mi)
- North of US 290, between Bee Cave and Dripping Springs

THE UNIVERSITY OF TEXAS AT AUSTIN

US 183A Frontage Road

- New toll road near Leander, north of Austin
- Tested shortly after TOM was paved

US 183A Frontage Road

US 183A Frontage Road

Austin District OBSI Results

TOM Frequency Spectra

PFC Frequency Spectra

PFC and DGAC Frequency Spectra

TOM vs. Other Pavements

Discussion of Results

- TOM average noise level: 98.5 dBA
- PFC average noise level: 102.0 dBA
- TOMs have become the quietest pavement type in the Austin area
- TOMs have kept their noise reduction properties over time
- Seal coats are the loudest pavement (106.4 dBA on average)

Acknowledgement

- Mike Arellano, TxDOT-Austin District
- John Wirth, TxDOT