Changes in sound due to noise barrier reflections

Judith Rochat, Ph.D. ATS Consulting

July 2017

NCHRP Project No. 25-44

- Two main objectives:
 - Determine spectral noise level characteristics in the presence of a single noise barrier on the opposite side of the road
 - Summarize results to help understand actual and perceived effects of a barrier
- Phase 1: barriers with reflective surfaces
 - Sound levels higher in presence of barrier
 - Frequency-specific differences varied by site
 - Greater effects farther from road and higher above ground

NCHRP

Web-Only Document 218:

Field Evaluation of Reflected Noise from a Single Noise Barrier— Phase 1

William Bowlby Rennie Williamson Darlene Reiter Clay Patton Geoffrey Pratt Bowlby & Associates, Inc Franklin, TN

Ken Kaliski Karl Washburn RSG White River Junction, VT

Judy Rochat ATS Consulting Pasadena, CA Ahmed El-Aassar Harvey Knauer Environmental Acoustics, Gannett Fleming, Inc. Harrisburg, PA

Gonzalo Sanchez Doug Barrett Sanchez Industrial Design, Inc. Middleton, WI

Contractor's Final Report for NCHRP Project 25-44 Submitted September 2015

TRANSPORTATION RESEARCH BOARD
The National Academies of
SCIENCES · ENGINEERING · MEDICINE

Copyright National Academy of Sciences. All rights reserved.

NCHRP Project No. 25-44

- Phase 2: barriers with absorptive surfaces (in progress)
 - o Interim report submitted
 - Final analysis to compare results for reflective and absorptive barriers
- Part of analysis includes spectrograms (spectral content as a function of time)
 - Generated for both highway traffic and individual vehicle pass-by events
 - Allows for visual examination of barrier effects
 - Phase 1 showed barrier-reflected noise caused ...
 - sound levels to increase over a broad range of frequencies
 - higher sound levels to be sustained for a longer period of time

Example vehicle pass-by event

with barrier

no barrier

Difference spectrograms

- Subtle differences are key to comparing reflective and absorptive barriers
- Method developed to visualize subtle differences: difference spectrograms
 - Compares same vehicle passing through barrier site and no barrier site
 - Maximum sound level for each site aligned after applying 3-second averaging to data
 - o Once aligned, 1-second averaging applied
 - Difference between barrier and no barrier data for each 1/3-octave band used to create difference spectrogram
- Preliminary results applying this method presented today

Example process

Align maxima

Barrier event spectrogram

No barrier event spectrogram

Difference spectrogram

red = barrier louder

white = no difference

blue = no barrier louder

Difference plots

"Hot lines" frequencies

"Hot lines" relationship

- Peak difference frequencies are harmonically related, with few exceptions
 - o Harmonic relationship: frequency is an integer multiple of base frequency

Site and event	Peak difference frequencies (Hz)	Harmonic relationships
MD-5 19:46	16, 20, 40, 80, 160, 400, 800, 1600, 12500	All except 16 are related to 20
		Alternately, all except 20, 40, and
		12500 are related to 16
MD-5 20:09	25, 50, 100, 200, 400, 1000, 1600, 6300, 10000	All are related to 25
I-90 14:41	16, 25, 31.5, 50, 63, 125, 250, 500, 1000, 2000, 3150, 5000, 8000	All except 16, 31.5, and 63 are related to 25
I-90 16:17	16, 25, 50, 63, 100, 250, 500, 2500	All except 16 and 63 are related to 25
SR-71 10:44	25, 50, 80, 315, 400, 630, 800, 2000, 2500, 6300, 8000, 12500	All except 80, 315, and 630 are related to 25
SR-71 12:10	25, 50, 80, 400, 1250, 2500	All except 80 are related to 25

Why harmonic relationship?

Comb filtering

- Effect created by direct-path sound wave combining with reflected-path sound wave
- Reflected-path sound is delayed in time from direct path
- Combination results in harmonically related peaks (constructive interference)
 and dips (destructive interference)

Perception of comb filtering

- Harmonically related peaks can result in perception of tonality
- Audio engineering (short delay times in recording studio)
 - o Sounds metallic, boxy, or artificial
 - Can make higher frequencies sound odd or harsh
- Psychoacoustics
 - Effect dependent on delay time
 - Coloration of sound (change in timbre) with delays < 25 ms
 - Longer delays = rough character effect
 - Very long delay time = echo
 - Repetition pitch
 - (sound) + (repetition of sound with delay time T) = repetition pitch of 1/T
 (e.g., 10 ms delay results in repetition pitch of 1/0.010 = 100 Hz)

Comb filtered highway noise

- Effect dependent on vehicle/site geometry
- For this study, site geometries result in 8 to 200 ms time delays
 - o Equates to 125 Hz and much lower repetition (base) frequencies
 - At max sound level, time delay greater than when vehicle up- or down-stream
- For single vehicle pass-by event, it is possible to perceive comb filtering effects as ...
 - Coloration of sound as the vehicle approaches or recedes
 - Fuller sound or echo at the closest point of approach

Audio analysis

- Further analyzed effects using audio file
- Sound for a vehicle pass-by event delayed in time and added to original
 - Delay times ranged from 20 ms to 200 ms
- For a 20 ms delay, effect was obvious raspiness or buzziness

vehicle pass-by vehicle pass-by, 20 ms delay added

 For sweeping time delay (20 ms to 100 ms to 20 ms), effect was raspiness/buzziness to full sound to raspiness/buzziness

vehicle pass-by, sweep delay added

Spectrogram differences for simulated effect

- Original audio compared to original plus barrier effect simulated by sweep delay
- Hot lines: 12.5, 20, 63, 100, 200, 500, 800, 1250, 12500 Hz
 - o All harmonically related to 12.5 Hz except 20 Hz

Conclusions

- Evidence that comb filtering effects adding tonal qualities to received sound
 - Particularly in low to mid frequencies
 - Applies to distances near and far from road
- Effect may add raspiness/buzziness, particularly as vehicle is approaching/receding
- Based on highway geometry delay times, very low frequency repetition pitches may be introduced – perceived?

Questions?

