Innovative / Alternative Contracting Methods and the Analysis of Highway Traffic Noise and Abatement Warrants

KENNETH POLCAK

MARYLAND DEPARTMENT OF TRANSPORTATION

STATE HIGHWAY ADMINISTRATION

TRB Committee ADC40 Summer Meeting — Minneapolis, MN July 23-26, 2017

Acknowledgement

- Matthew G. Mann, Sr., PE
 - ► In-house Consultant for the Noise Abatement Design & Analysis Team in the Office of Planning and Preliminary Engineering at MDOT SHA.
 - Senior Highway Noise Analyst and TNM Technical Expert
 - Developed numerous analysis tools and procedures.
 - Provided substantial input into articulating the specific analysis issues and challenges encountered in the context of D-B projects.

Focus of Discussion

- Quick overview of contracting methods and goals
- ► Analysis Processes
- ▶ How contracting method affects noise analysis
- Others experiences

Contracting methods

- ▶ Design-Bid-Build
- ▶ Design-Build
- ► Progressive Design-Build

Goals in Pursuing Innovative/ Alternative Contracting

- Consolidating responsibilities to a single entity.
- Foster flexibility and innovation in development of design solutions.
- Shorten overall project delivery time.
- ▶ Cost reduction.
- Provide a "better" product/project.

Design-Bid-Build vs. Design-Build

DESIGN-BUILD CONTRACTUAL RELATIONSHIP Traditional Project Delivery

Owner must manage two separate contracts; owner becomes middleman, settling disputes between the designer and the contractor. Designer and contractor can easily blame one another for cost overruns and other problems.

Owner manages only one contract with a single point of responsibility; designer and contractor are on the same team, providing unified recommendations. Changes are addressed by design-build entity, not used as excuses.

Sequence of Project Delivery Activities by Contract Approach

Source: Dr. Keith Molenaar, University of Colorado at Boulder

Graphic from Design-Build Effectiveness Study - Final Report, January 2006, for USDOT, FHWA

Design-Bid-Build

- "Traditional" method.
- Sequential.
 - ▶ Application of environmental regulations / permitting.
- ► Lengthy schedules.
- Noise analysis follows sequential process.
 - Inventory / Identification of land uses.
 - Existing noise measurements / model validation.
 - ▶ Future prediction of noise levels.
 - ► Impact evaluation.
 - ► Abatement analysis.

Design-Build

- ► Fixed price based on preliminary design (15-30%).
- Concurrent final design activities, based upon preliminary design provided by owner.
- Compressed schedules.
- Environmental analyses (including noise) based on preliminary design.
- Performance specifications (including for mitigation).
- Streamlined processes.

Progressive Design - Build

- Design-builder retained early in project, in some cases prior to start of design development.
- Design-builder selected primarily on qualification; cost and schedule not considered in selection.
- Minimized prescriptive detail to foster maximum flexibility and innovation.
- ▶ Two phase delivery...
 - Phase 1 pricing level design, preconstruction services & negotiation of firm contract price.
 - ▶ Phase 2 Final design & construction.

So, how has D-B / PDB affected the conduct of highway noise analyses?

General observations

- Studies and research into "effectiveness" of D-B approach to projects; little to no mention of specific environmental considerations, except for issues of permitting.
- Other environmental clearances / approvals through the NEPA process not specifically evaluated in terms of scheduling influences, data requirements.

General observations

- Influence by political or other "outside forces", which require extremely compressed project schedules, D-B preferred approach.
- ▶ It appears that adoption of D-B and PD-B is being done in a "regulatory vacuum"; technical analysis must be completed with less than optimal base information, and in a compressed timeframe.
- Design changes that require revisiting of previous analysis can result in changes in impact and abatement determinations.

Other Specific Issues (Noise)

- Standard sequential procedures don't always apply.
 - ▶ Every project requires a customized analysis approach.
 - ► Mature analysis (final design-level base data) completed prior to RFP including performance specs for confirmed abatement measures.
 - ▶ Abatement eligibility determined after RFP, during the D-B process.
 - ▶ Base data only prepared for the RFP consisting of existing measurements and validation. No future abatement warrants yet determined.
 - ▶ Abatement implementation deferred to separate D-B to follow main project. Barrier concepts developed in-house under existing worst case (EWC) to facilitate/support subsequent "future build" barrier analysis.
 - Schedules may dictate model development and measurement be done concurrently.

TRB Committee ADC40 Summer Meeting — Minneapolis, MN July 23-26, 2017

Other Specific Issues (Noise)

- Standard sequential procedures don't always apply.
 - Some project analyses based on conceptual designs; detailed designs do not yet exist.
 - ▶ EWC modeling (conducted **prior to** measurements/validation) used to determine where noise barriers may likely be required; used to develop early project cost estimates.
 - Noise abatement liability is being sought based on conceptual designs.
 - Only viable for certain projects like those that do not involve radical or substantial changes to the existing facility. (e.g. projects designed for congestion relief)
 - Auxiliary lanes.
 - ► Restriping for added capacity.
 - ▶ Part-time / hard-running shoulder use.

TRB Committee ADC40 Summer Meeting — Minneapolis, MN July 23-26, 2017

SOLUTION

- Collaborative approach to conduct of noise analyses (already part of MDOT SHA practice/procedures).
 - Establishing / providing NSA delineations/definitions to analysis provider.
 - ► Traffic data pre-processing for TNM.
 - Ongoing, intermediate technical reviews (measurements, modeling, and abatement analysis).
 - ▶ Allows for targeted efforts at streamlining certain aspects of the noise analysis (based on scheduling pressures).

Any thoughts /experiences with D/B in conducting highway noise analysis?

THANK YOU

