Iowa DOT's Vibration Monitoring Program

Presented by Charles Bernhard, Iowa DOT and Bob Hannen, WJE

https://iowadot.gov/ole/vibration-workshop

White Paper

Written as technical guidance for protection of historic structures.

- Division of Responsibility:
 - Office of Location and Environment
 - District Office responsible for non-historic structures
- Tiered Risk Management Includes Assessment of:
 - Magnitude and frequency of "source"
 - Proximity of vibration source to receptor (normally < 300 feet)
 - Medium (e.g., soil, rock)

Special Provision

- Identifies properties to be protected using vibration monitoring techniques.
- Outlines requirements for monitoring plan
- Establishes preconstruction work requirements
- Qualifies that the peak particle velocity (PPV) will be determined based on the pre-construction survey
- Requires a post-construction for documenting negation of construction effects on receptors.

Preconstruction Survey

- Purpose
- -Document the structural condition prior to beginning construction activities.
- Parts
 - -Risk assessment/management,
 - -Identify vulnerabilities, establish vibration threshold
 - -Documentation

Benefits of Being Proactive

- Good working relationship with our stakeholders (e.g. SHPO, FHWA residents of Iowa)
- Less possibility of legal issues saving time and money
- Expedite project
- Avoid liability of repairs

Techniques for Vibration Monitoring/Vibration Limits - WJE

Human Perception

The human body can perceive very low levels of vibrations

ENGINEERS
ARCHITECTS
MATERIALS SCIENTIST

Typical Monitoring Equipment

- Engineering Seismographs
 - Digital
 - Continual monitoring
 - Remote access
- Geosonics
- Instantel
- Sigicom

Parameters to Monitor

Particle Velocity

Parameters to Monitor

- Frequency
 - Zero-Crossing
 - Differs from FFT

Parameters to Monitor

- Frequency
 - Zero-Crossing
 - Limitations

Typical Vibration Limits

- USBM RI-8507 and OSMRE
 - Based on testing of residential buildings
 - Ground vibration measurements
 - Potential for initiating new cracks or enlarge existing cracks
 - Amplitudes below line exhibited No Damage

Typical Vibration Limits

• DIN 4150

- Basis is not clearly identified
- Ground vibration measurements
- Line 1 for commercial buildings
- Line 2 for residential structures
- Line 3 for historic structures, or ruins

Seismograph Installation

- Basement slab
- Foundation wall
- Soil outside of building
- Securely attached to surface

Recommended Reporting

- Daily system checks
- Weekly Reports

Recommended Reporting

Show continuity of monitoring

Recommended Reporting

Amplitudes versus frequencies

